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Viruses are remarkable examples of order at the nanoscale, exhibiting protein

containers that in the vast majority of cases are organized with icosahedral

symmetry. Janner used lattice theory to provide blueprints for the organization

of material in viruses. An alternative approach is provided here in terms of

icosahedral tilings, motivated by the fact that icosahedral symmetry is non-

crystallographic in three dimensions. In particular, a numerical procedure is

developed to approximate the capsid of icosahedral viruses by icosahedral tiles

via projection of high-dimensional tiles based on the cut-and-project scheme for

the construction of three-dimensional quasicrystals. The goodness of fit of our

approximation is assessed using techniques related to the theory of polygonal

approximation of curves. The approach is applied to a number of viral capsids

and it is shown that detailed features of the capsid surface can indeed be

satisfactorily described by icosahedral tilings. This work complements previous

studies in which the geometry of the capsid is described by point sets generated

as orbits of extensions of the icosahedral group, as such point sets are by

construction related to the vertex sets of icosahedral tilings. The approximations

of virus geometry derived here can serve as coarse-grained models of viral

capsids as a basis for the study of virus assembly and structural transitions of

viral capsids, and also provide a new perspective on the design of protein

containers for nanotechnology applications.

1. Introduction

Viruses are well known for their devastating impact on health

and the economy, but the development of technology has

enabled us to deepen our understanding of these entities, and

the possible applications of these results in the medical field

and nanotechnology are promising. The work presented here

focuses solely on the study of protein shells (also called

capsids) of icosahedral viruses. The capsid protects the

genomic material of the virus and interacts with the host cell

during the infection process. Understanding the structure of

these capsids is therefore of utmost importance not only for

the design of new antiviral drugs, but also for many other

applications in nanotechnology. For example, the construction

of protein cages from viral proteins (lacking viral genome),

referred to as virus-like particles, can be used as gene vectors,

i.e. to transport genetic material into cells for therapeutic

purposes (Ma et al., 2012). These (non-infectious) particles

provide containers preventing premature degradation of drugs

which, combined with the high host-cell specificity of viruses,

can deliver these drugs to the specific targeted tissues. In

cancer therapy, viruses carrying gold particles have been used

to target cells for photothermal cancer treatment (Everts et al.,

2006).

The introduction of the concept of quasi-equivalence by

Caspar & Klug (1962) was the stepping-stone for subsequent
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mathematical models of the structural organization of viruses.

Caspar and Klug demonstrated that if the proteins of the

capsid are in quasi-equivalent local environments, i.e. if the

local bonding environments of all proteins are similar, then

their positions and orientations are encoded by a subtrian-

gulation T of the icosahedral surface. Although applicable to

many viruses, this theory provides no radial information on

the structure of the capsid. Janner was the first to use three-

dimensional lattices to study the mathematical principles

underpinning the structural organization of viruses at different

radial levels based on their crystal structures (Janner, 2006,

2010a,b). Although some of the essential viral features could

be modelled in this context, the icosahedral nature of viral

capsids suggests the use of tilings with non-crystallographic

symmetry to better understand the geometrical constraints

imposed on virus architecture. A technique for describing the

structure of viral capsids was developed based on affine

extensions of the symmetry group of the capsid (Keef et al.,

2008; Keef & Twarock, 2009). This approach uses subsets of

the vertex sets of quasilattices to formulate constraints on

virus architecture (Keef et al., 2013), and it has been shown in

Indelicato et al. (2012) that these constraint sets can be

derived, via projection, from a higher-dimensional lattice

using the cut-and-project scheme (Senechal, 1996). These

constraint sets have been classified and matched to viral

capsids using an automated best-fit algorithm. A study of a

wide range of viruses has revealed that icosahedral symmetry

and the surface tilings developed by Caspar and Klug in quasi-

equivalence theory are part of a much wider set of constraints

on virus architecture that are characteristic of the structural

features of a virus at different radial levels.

Motivated by the fact that the constraint sets used earlier

are by construction subsets of the vertex sets of quasilattices,

we present here a study of how quasilattices and the three-

dimensional associated tilings can help us understand the

geometric principles underpinning the structures of viral

capsids and provide coarse-grained models that capture

essential features of a viral architecture. We use the cut-and-

project method, as detailed in x2, to construct icosahedral

tilings. In addition to the constraint sets derived in Keef et al.

(2013), the tilings contain edges and tile surfaces. In x3 we

present a new algorithm that evaluates the goodness of fit of

such tilings to a capsid, evaluating which tile sets best

approximate the capsid. In x4 we show an application of the

procedure to a range of viral capsids.

Our work should be viewed as a further step towards an

extended exploration of the use of quasicrystallographic

techniques to describe assemblies of proteins with icosahedral

symmetry, following on from Janner’s seminal work of using

lattice theory for the modelling of virus architecture. A

description of viral capsids in terms of icosahedral tilings has a

number of potential applications that are worth exploring.

Firstly, icosahedral tilings obtained by the cut-and-project

method are encoded by a number of parameters that are

orders of magnitude smaller than the size of the original PDB

(Protein Data Bank) file; such parameters are, for instance, the

scaling and the actual tiles in the fundamental domain with

occupancy larger than a fixed threshold. Hence, such encoding

of capsid geometry is much more tractable, for instance, in

order to identify surface features, such as local symmetry axes,

the T number, and so on, by automatic computer programs

designed for that purpose. Moreover, these tiling approxima-

tions of viral capsids can be used as coarse-grained models to

study virus assembly and structural transitions in viral capsids.

Finally, icosahedral tilings adapted to viral capsids can also be

used as guidelines to design building blocks for synthetic viral

nanoparticles. Indeed, since the tiles are obtained by projec-

tion and hence by construction they fit together to form an

icosahedrally symmetric particle, building blocks designed

according to the shapes of tiles would therefore have the

correct interfacial structures to result in self-assembled

particles.

2. Three-dimensional icosahedral tilings via the cut-
and-project method

In this section we quickly review the cut-and-project method

to construct three-dimensional tilings with icosahedral

symmetry, using projections from six-dimensional space to a

three-dimensional subspace invariant under the icosahedral

group (Kramer & Schlottmann, 1989). We will refer to the

corresponding tilings as ‘gauge’ tilings, that will be rescaled to

fit the viral capsid.

A tiling of three-dimensional space is a countable collection

of closed polyhedra, called tiles,

T ¼ ft1; t2; . . .g

such that

R
3
¼ [1i¼1ti; intðtiÞ \ intðtjÞ ¼ ;; i 6¼ j;

where intðtiÞ is the interior of ti. We assume that the tiles have

positive volume and are the closures of their interiors. The 2-,

1- and 0-dimensional faces of each tile will be called facets,

edges and vertices, respectively.

In order to enforce icosahedral symmetry, we construct

tilings by projection from six-dimensional space. In fact, the

lowest dimension in which a lattice has icosahedral symmetry

as part of its point group, and a three-dimensional subspace

invariant under icosahedral symmetry, is 6 (Levitov & Rhyner,

1988), and there are precisely three lattice types (Bravais

lattices) with this property in six dimensions: the simple cubic

(s.c.), the body-centred cubic (b.c.c.) and the face-centred

cubic (f.c.c.) lattices (Levitov & Rhyner, 1988).

The algorithm for the construction of the three gauge tilings

via the cut-and-project method is based on the following steps

(Katz, 1989):

(a) Computation of the six-dimensional Voronoi cell at the

origin. For a given six-dimensional lattice L in R6 (either the

s.c., f.c.c. or b.c.c. lattice), we compute the Voronoi cell around

the origin O of the lattice, i.e.

VðOÞ ¼ fu 2 R6; jO� uj � jy� uj; 8y 2 L n fOgg: ð1Þ

The Voronoi cell is a convex polytope, and its k-dimensional

faces can be computed iteratively using the QHull package
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(Barber et al., 1996). Actually, the collection of the Voronoi

cells VðqÞ at all lattice points q 2 L is a cell complex and a

periodic tiling ofR6. Its dual complex is also a periodic tiling of

R
6, called the Delone tiling, constructed as follows: if B is a

p-face of a Voronoi cell, i.e. a p-cell of the Voronoi complex, its

dual cell B� has dimension n� p and is the convex hull of the

centres of the Voronoi cells that intersect in B (Senechal,

1996).

(b) Projection of the tiles in three dimensions. There is a

unique decomposition of six-dimensional space into the direct

sum of two three-dimensional subspaces corresponding to the

two inequivalent three-dimensional irreducible representa-

tions of the icosahedral group. The projections onto these

subspaces will be denoted by �? and �k, and the subspaces

themselves will be referred to as the perpendicular and

parallel space [see Katz (1989) for their definition].

Tiles in three dimensions are constructed as projections

onto the parallel space of the duals B�ðqÞ of suitable 3-faces

BðqÞ of the Voronoi cells VðqÞ at lattice points q. More

precisely, the three-dimensional tiles are those �kðB
�ðqÞÞ for

which �?ðBðqÞÞ contains the origin in perpendicular space.

Since the Voronoi cell VðqÞ at a lattice point q is given by

VðqÞ ¼ VðOÞ þ q, it is enough to compute the tiles as

�kðB
�ðOÞÞ þ�kðqÞ for all lattice points q such that

�?ð�qÞ 2 �?ðBðOÞÞ, where BðOÞ is a 3-face of the Voronoi

cell at the origin.

(c) Computation of the glue tiles. If the projection of �q

onto the perpendicular space lies in the intersection of the

projections of the boundaries of several 3-faces of Vð0Þ, i.e. if

�?ð�qÞ 2
\

j

�?ð@BjðOÞÞ

" #
;

then inconsistencies arise in step (b). In this case it is necessary

to define glue tiles as the projection onto the parallel space of

the dual to the intersections of those boundaries, i.e.

�k
\

j

@BjðOÞ

 !�" #
þ�kðqÞ:

The union of the tiles determined in step (b), together with the

glue tiles constructed in step (c), define the gauge tilings that

we use to model virus structure. In this work we will denote

the three gauge tilings either by

T s:c:; T b:c:c:; T f:c:c:;

or, when the underlying six-dimensional lattice is fixed, simply

by T . Examples of the three tiling types obtained by projec-

tion are given in Fig. 1.

3. The matching algorithm

We describe below the algorithm that matches the icosahedral

tilings to the viral capsid. Experimental data of virus structure

are derived from X-ray and cryo-electron microscopy

experiments and are available as PDB files from the Viperdb

website (Carrillo-Tripp et al., 2009). Each PDB file contains

the Cartesian coordinates of the atoms of the protein shell

and, if available, of the genomic material present in the viral

capsid.

3.1. Step 1, pre-processing of the PDB data: representation of
the capsid surface by the surface meshM

Since our algorithm focuses only on the viral capsid, the

information on the position of the genetic material of the virus

must be removed from the PDB files prior to analysis. Then,

after a centring that fits the data with the origin of the tilings,

all atoms in the resulting PDB files are rotated such that their

axes of symmetry align with those of the tilings, and the shape

of the viral capsid is calculated as the solvent-excluded surface

(SES) of the proteins using the PyMol software (The PyMOL

Molecular Graphics System, Version 1.7.4, Schrödinger, LLC).

The output is a mesh of points on the SES.

For simplicity, we assume that all atoms are represented by

spheres centred at the atomic positions (given by the PDB file)

with radius the average van der Waals radius computed over

all species of atoms present in the protein shell. The atomic

species (for example, carbon, nitrogen etc.) of each atom is

available in the PDB file and the values of the van der Waals

radii used to compute the average radius have been taken

from Bondi (1964).
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Figure 1
Vertex configurations at the origin for the (a) s.c., (b) b.c.c. and (c) f.c.c.
tilings. For each case the distinct types of tiles are highlighted in grey.

Figure 2
Illustration of the surface representation procedure described in Step 1,
applied to the native form of Cowpea chlorotic mottle virus (PDB entry
1cwp). The portion of the SES surface output by PyMol that intersects
the fundamental domain of the icosahedral group is represented in green;
a close-up view representing the vertices of the original mesh (green
spheres) as well as the reduced meshM (red spheres) is shown in the box
in magnification.



To reduce computation time the number of vertices repre-

senting the mesh is limited to one every 2 Å. We denote byM

the resulting subset of vertices; the reduction enables faster

computations while keeping the essential features of the

capsid (see Fig. 2), and is also consistent with the fact that the

finest resolution of experimental data is usually higher than

3 Å.

3.2. Step 2, scaling

Each of the gauge tilings constructed by the cut-and-project

method is rescaled to fit the viral capsid by applying a scaling

transformation, i.e. a linear transformation of R3 of the form

OP 7! sOP with O the origin in R3, P 2 R3 and s 2 ð0;þ1Þ.
A rescaled tiling will be denoted by T ðsÞ.

3.3. Step 3, tile occupancy

In this section we fix a value of the scaling s and describe the

rules which select the subset of tiles in T ðsÞ that will be

matched to the viral capsid. The process is iterated for

different values of s in a given range (whose boundaries are

explained in detail in xx3.4 and 3.5).

Intuitively, for a tile to be selected it must contain at least a

minimum number of atoms of the viral capsid.

It is more convenient to work in terms of occupancy rather

than in terms of the number of atoms within a tile, since tiles

may have different sizes. For simplicity, we say that an atom is

inside a tile if the centre of the atom is inside the tile, bearing

in mind that in our model each atom is represented by a

sphere of fixed radius. This can lead to cases where the volume

occupied by atoms within a tile is larger than the volume of the

tile (i.e. �i > 1, see below), but these cases occur primarily for

small values of s. Overall, this simplification remains good

enough while reducing the computation time to reasonable

levels.

Definition 3.1. We define the occupancy of a tile ti 2 T ðsÞ as

�i ¼
NiV

volðtiÞ
ð2Þ

where V is the volume of an atom, Ni is the number of atoms

of the viral capsid whose centre lies in the tile ti and volðtiÞ is

the volume of ti.

We fix a minimal threshold occupancy � by requiring that a tile

is taken into consideration by the algorithm if its occupancy

satisfies �i � �.

Definition 3.2. We denote by ST ðs; �Þ the subset of tiles in

T ðsÞ with occupancy larger than �, ordered in increasing order

of tile occupancy�i, i.e.

ST ðs; �Þ ¼ fti 2 T ðsÞj�i � � and �i � �j for i � jg: ð3Þ

We denote by

AT ðs; �Þ

the boundary surface of ST ðs; �Þ, defined as the union of the

facets of the tiles which are not shared by any two tiles in this

set, and we denote by jAT ðs; �Þj the number of facets of

AT ðs; �Þ. Further, we denote by

BT ðs; �Þ

the complex composed of the facets, edges and vertices of

AT ðs; �Þ, and we write jBT ðs; �Þj for its cardinality.

Increasing the minimal threshold occupancy � results in a

smaller set of tiles, i.e. ST ðs; �
0Þ � ST ðs; �

00Þ for �0>�00. On the

other hand, the tiles in ST ðs; �Þ can be the same for different

values of �: the change in the set ST ðs; �Þ occurs at discrete

values ��, � ¼ 1; . . . ;N, such that ST ðs; �Þ ¼ ST ðs; ��Þ for

every � 2 ð���1; ���. Indeed, �� is the lowest value of �i for

tiles ti in ST ðs; �Þ, where � 2 ð���1; ���. Using this observation

it is natural to define a non-increasing sequence of tilings using

the occupancies of the tiles, i.e. by

ST ðs; �Þ 	 
 
 
 	 ST ðs; �iÞ 	 ST ðs; �iþ1Þ 	 
 
 
 ð4Þ

where �i is the occupancy of tile ti 2 T ðsÞ.

Therefore, for each value of the scaling factor s, a finite non-

increasing sequence of tilings is defined, obtained by

increasing the minimal tile occupancy.

For example, suppose ST ðs; 0:5Þ is composed of three tiles

t1, t2 and t3 with occupancy �1 <�2 <�3. Then the sequence

above becomes

ST ðs; 0:5Þ ¼ ST ðs; �1Þ ¼ ft1; t2; t3g � ST ðs; �2Þ

¼ ft2; t3g � ST ðs; �3Þ ¼ ft3g:

3.4. Step 4, construction of the library of tilings

In order to construct a library of tilings that are good

candidates to approximate the data, we restrict the algorithm

to tilings ST ðs; �Þ that fulfil the following properties:

(i) � � 0:5, i.e. each tile in ST ðs; �Þ must have at least 50%

occupancy.

(ii) The union of the tiles in ST ðs; �Þ must contain at least

90% of the total main-chain atoms of the capsid (i.e. the chain

of C, C� and N atoms to which the side chains are attached)

within experimental precision.

(iii) The scaling factor is restricted to a suitable interval

½smin; smax�. To define the upper bound smax, notice that, after

removing the genome, the capsid is a container whose interior

is empty, and we require that some tiles within the capsid

remain empty for any sampled value of s. For large scaling

values, this is the case if at least the tiles in the vertex

configuration at the origin O, i.e. the collection of tiles around

the origin (see Fig. 1), do not intersect the protein shell, i.e. are

contained in the empty region encompassed by the shell.

Hence, we choose smax as the maximal scaling such that no

atoms of the capsid are within tiles with vertex O.

The lower bound smin requires the introduction of the

function �sd and will be defined later.
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To construct the library, we restrict the algorithm to discrete

values of the scaling factor:

sk 2 ½smin; smax�; k ¼ 1; . . . ; n;

for each such value, as discussed above, there is an increasing

sequence of tilings

ST ðsk; �Þ 	 
 
 
 	 ST ðsk; �iÞ 	 ST ðsk; �iþ1Þ 	 
 
 
 ð5Þ

defined in terms of the tile occupancy. The set of tilings

ST ðsk; �iÞ; ð6Þ

as k and i vary, is the library of tilings to which we shall restrict

the algorithm in what follows.

3.5. Step 5, goodness of fit 1

The problem of finding the set of tiles that best approx-

imates the surface of the protein shell can be formulated in a

manner similar to polygonal approximation problems

(Masood, 2008; Kolesnikov, 2012; Marji & Siy, 2003; Pikaz &

Dinstein, 1995; Perez & Vidal, 1994; Ramer, 1972; Ray & Ray,

1993; Winzen & Niemann, 1994), in which polygonal curves

are constructed to approximate a given one. In our case, the

three-dimensional polyhedron to be approximated has

vertices M on the SES of the viral capsid, and the approx-

imating polyhedron is defined by the boundary surface

AT ðs; �Þ of ST ðs; �Þ. In this section we describe the scoring

system that we use to quantify the approximation error.

We introduce some notation. For vi 2 M, denote by PAðviÞ

the projection of vi onto AT ðs; �Þ, i.e. the point of AT ðs; �Þ
having minimal distance from vi (assuming this is unique), and

by di the corresponding minimal distance between vi and

AT ðs; �Þ.

Definition 3.3. For a given tiling ST ðs; �Þ, the integrated

square error �sdðs; �Þ is defined by

�sdðs; �Þ ¼
P

fijvi2Mg

d2
i : ð7Þ

The quantity �sd is widely used in polygonal approximation

problems (Masood, 2008; Kolesnikov, 2012; Marji & Siy, 2003;

Perez & Vidal, 1994). This score penalizes each vertex inM

with regard to its distance from AT ðs; �Þ. The bigger the value

of �sd, the poorer the quality of the approximation.

In order to establish whether the score �sdðs; �Þ is appro-

priate to assess the goodness of fit of our approximation, we

have evaluated it for a sequence of tilings ST ðs; �Þ for a test

case in Fig. 3. Indeed, as the scaling s decreases, �sdðs; �Þ tends

to decrease with s. The local minima in Fig. 3 are due to the

fact that the tiling ST ðs; �Þ may be the same for a whole

interval of the scaling factor s, in the sense that the number

and type of tiles do not change up to rescaling. For each range

in which ST ðs; �Þ remains the same, there is a value of s for

which the approximation, as measured by �sdðs; �Þ, is optimal:

these correspond to the local minima in Fig. 3.

In our case, however, even for a simple example such as the

one presented in Fig. 4, visual inspection of the tilings shows

that �sd favours sets which do not match our intuitive notion of

a good approximation of the surface of the shell by the tiles.

In order to better describe the fine features of the capsid

surface, we decompose �sd into the sum of two scores �1 and �2

as follows. Denoting byMj the set of vertices whose projec-

tion belongs to the jth element of BT ðs; �Þ and by

Dj ¼
1
jMjj

P
fijvi2Mjg

di the average distance of the jth element

of BT ðs; �Þ from the vertices inMj, then

�sdðs; �Þ ¼
PjBT ðs;�Þj
j¼1

P
fijvi2Mjg

d2
i ¼

PjBT ðs;�Þj
j¼1

P
fijvi2Mjg

ðdi �Dj þDjÞ
2

¼
PjBT ðs;�Þj
j¼1

2Dj

P
fijvi2Mjg

ðdi �DjÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0

þ
PjBT ðs;�Þj
j¼1

P
fijvi2Mjg

D2
j

þ
PjBT ðs;�Þj
j¼1

P
fijvi2Mjg

ðdi �DjÞ
2

¼ �1ðs; �Þ þ �2ðs; �Þ;

where

�1ðs; �Þ ¼
PjBT ðs;�Þj
j¼1

jMjjD
2
j ; �2ðs; �Þ ¼

PjBT ðs;�Þj
j¼1

P
fijvi2Mjg

ðdi �DjÞ
2:

ð8Þ

The score �1ðs; �Þ penalizes sets for which the distance

between the average position of the approximated points in

Mj and the corresponding element in BT ðs; �Þ is larger.

The score �2ðs; �Þ measures the difference between the

distance of the vertices inMj from the jth element in BT ðs; �Þ
and the average distance Dj. It can be viewed as a score that

quantifies the alignment of the boundary of the tiling to the

detailed features of the shape of the surface of the protein
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Figure 3
Determination of smin for matching of the b.c.c. tiling to the viral capsid of
the Minute mice virus (PDB entry 1mvm). The values of �sdðs; �iÞ are
represented as a function of the scaling s for different values of �i

corresponding to the sequences of configurations ST ðs; �iÞ defined in
equation (4). The values such that �sdðs; �iÞ � ��sd are coloured in red.
The minimal score min�i

�sdðs; �iÞ has local minima with respect to s for
scalings s = 9.5, 10.3 and 11.4, which possibly correspond to good fits. For
all s � 9:0, the sets of tiles satisfy min�i

�sdðs; �iÞ � ��sd. The measure of
�sd is then limited by the uncertainty of the experimental measure, and
therefore we choose smin ¼ 9:0.



shell as modelled by M. When all vertices in Mj are equi-

distant from the jth element in BT ðs; �Þ, the contribution of

these vertices to �2 vanishes, see Fig. 5.

The reason why �sd is not a suitable score is due to the fact

that in general �1 is larger than �2. In polygonal approximation

studies, �sd is not governed by �1, as the vertices of the

approximating polygon are chosen as a subset of the vertices

of the approximated polygon. In our case, the approximating

polyhedra are fixed by icosahedral symmetry via the cut-and-

project method and a renormalization of the scores �1 and �2

is therefore required to make them comparable. It is impor-

tant to recall that the scores �sd, �1 and �2 depend on the tiling

T (either the b.c.c., f.c.c. or s.c. tiling). However, we will not

make this dependence explicit in the notation unless strictly

necessary, as in equation (11).

Lower bound for the scaling factor s. To devise a lower

bound for s, we use the score �sd and the precision " on the

experimental data.

Definition 3.4. We define

��sd ¼ "
2
jMj: ð9Þ

Notice that if di <" for every vi 2 M, then �sd <��sd and all

points of M lie on the surface AT ðs; �Þ within experimental

precision, and decreasing �sd is meaningless. Hence, we define

smin as the largest scaling for which �sdðt; �Þ is below the

threshold ��sd for all s 2 ½0; smin�. Formally,

smin ¼ supfs : min
��0:5

�sdðt; �Þ � ��sd for all t< sg:

An example is shown in Fig. 3.

3.6. Step 6, goodness of fit II. Renormalized integrated
square error

As discussed in the previous section, the contributions of

the scores �1 and �2 to the total score �sd are not comparable,

since typically �1 is larger than �2. Hence, it is better to define

a new score

�ðs; �Þ :¼ r�1ðs; �Þ þ �2ðs; �Þ; ð10Þ

in which �1 is weighted by a suitable renormalization factor r.

In order to define it, let

Rð�Þ :¼
P
T ;k;i

ð��T ;1ðsk; �iÞ � �T ;2ðsk; �iÞÞ
2

ð11Þ

where �T ;1 and �T ;2 are the scores �1 and �2 relative to the

tiling T , and the sequence ðsk; �iÞ of all admissible values of

the scale factors and occupancy is defined in equation (5).

Notice that Rð�Þ contains contributions from the scores

relative to all three tilings T ¼ T s:c:; T f:c:c:; T b:c:c:.

In order to minimize the difference between the contribu-

tions of ��1 and �2 to � we minimize Rð�Þ with respect to �.

Definition 3.5. The renormalization factor r is the value of �
that minimizes Rð�Þ, i.e.

r :¼

P
T ;k;i �T ;1ðsk; �iÞ�T ;2ðsk; �iÞP

T ;k;i �
2
T ;1ðsk; �iÞ

: ð12Þ

3.7. Step 7, interpretation of the renormalized integrated
square error

In two-dimensional polygonal approximation studies two

approximating polygons with the same number of edges are

compared. In the same spirit, in our three-dimensional case,

we compare different approximations of M if they have the

same number of facets. More precisely, we compute the score

� for every tiling and every discretized value of the scaling

factor and occupancy and, among all the tilings that have the

same number of facets, visualize only the minimum value of

the score. Precisely, for each tiling

ST ðsk; �iÞ;

we compute the set of boundary facets and the renormalized

integrated square error

AT ðsk; �iÞ; �ðsk; �iÞ:

Let I be the fundamental domain of the icosahedral group in

three dimensions, which is a cone with vertex the origin in R3.

Denoting by
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Figure 5
Here we assume that the approximating polyhedron is made of a single
tile, whose edges are represented by dashed lines. In this case, the
complex BT ðs; �Þ is the union of the facets, the edges and the vertices of
the polyhedron. The light-grey planar surfaces, the dark-grey cylinders
and the black spheres are loci of points equidistant from the facets, the
edges and the vertices of BT ðs; �Þ, respectively. The score �2ðs; �Þ is
minimized if, for a given average distance from BT ðs; �Þ, the points of the
setM to be approximated lie on the equidistant surfaces.

Figure 4
The vertices inM (grey dots) and their projections (empty circles) onto
the facets of Aðs; �Þ (black lines) are shown for two different tile
selections in (a) and (b). The score �sd is higher in case (a) than in case
(b), contradicting our intuitive notion of a good fit.



jAT ðsk; �iÞ \ Ij

the number of facets that intersect a fundamental domain, we

define the minimum renormalized integrated square error

corresponding to all tilings with the same number of facets as

�minðNÞ ¼ min
sk;�i

f�ðsk; �iÞ : jAT ðsk; �iÞ \ Ij ¼ Ng:

Notice that the facets intersecting the boundary of the

fundamental domain are counted at least twice in N. However,

we assume that N is a reasonable proxy for the number of tiles.

Typical plots of the minimum score �minðNÞ are shown in Figs.

6, 9, 11, 13, 16 and 18.

In these plots, we can distinguish between two regions:

(i) For low values of N (i.e. when the size of the tiles in ST is

large) the values of �min undergo large oscillations, as the

change of tiles corresponds to large changes in the shape of

the approximating polyhedron. In some cases, tiles over-

lapping with the protein shell represent such a poor approx-

imation that there is no tiling satisfying the restrictions on

occupancy for some values of N.

(ii) For large values of N the size of the tiles compared to

the capsid is small; as the number of facets increases, smaller

features of the capsid, such as protrusions, can be approxi-

mated: when these features can be fitted, �min decreases to a

local minimum or a plateau.

However, care must be taken when interpreting results for a

large number of facets. In fact, given sufficiently many facets,

the algorithm attempts to minimize the score by fitting smaller

features, including those related to the tertiary structures of

proteins. Small features of the capsid are highly mobile and it
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Figure 6
(a) The MVM capsid (T ¼ 1) with a protein subunit represented in blue. (b) Plot of the score �min as a function of N for each of the three tilings with a
renormalization factor r1mvm � 0:324. (c) Magnification of the plot of the score �min showing some of the first minima (N ¼ 15; 26), as well as N ¼ 36,
corresponding to the tiling shown in Figs. 7 and 8.

Figure 7
Comparison between some tilings fitting the Minute mice virus capsid:
cross-sectional views along the fivefold axis. (a) s.c. tiling corresponding
to N ¼ 26; (b) b.c.c. tiling corresponding to N ¼ 15; (c) f.c.c. tiling
corresponding to N ¼ 36. Visual inspection shows that the s.c. and b.c.c.
tilings do not provide good approximations of the inner and outer
surfaces of the MVM capsid, whereas the f.c.c. tiling provides a better
approximation of the capsid layout.

Figure 8
f.c.c. tiling for N ¼ 36 matching the Minute mice virus: (a) view along the
twofold axis; (b) slice along the same axis.



is not clear whether symmetry constraints apply here and,

further, the reliability of the PDB data themselves is reduced.

Therefore, also the reliability of our approximation is reduced

for large N.

Since the renormalization factor r is independent of the

type of tiling we show in each figure the scores corresponding

to the three different tilings on the same plot for comparison

(see for instance Figs. 6, 9, 11, 13, 16 and 18).

4. Application to viruses

In this section we apply the matching algorithm to some

T ¼ 1 and T ¼ 3 viral capsids. The colour code is the

same in all figures: the scores corresponding to s.c., b.c.c. and

f.c.c. tilings are plotted as blue, red and green dots, respec-

tively.

In the figures displaying the tilings, the edges of the tiles are

represented as black lines and, for T ¼ 3 viruses, the A, B and

C chains have different colours.

When discussing the scores relative to each tiling, we keep

in mind the issues discussed in the previous section:

(a) Global minimization of the score �min is not a viable

criterion for the selection of the best approximation, since,

apart from local fluctuations (see below), the score tends to

decrease as the number of facets increases.

(b) Acceptable approximations should locally minimize the

normalized integrated square error, in the sense that they

should realize the minimum error among all those tilings with

a comparable number of facets.

(c) Alternatively, approximations could be chosen as those

that realize a plateau of the score.

(d) Acceptable approximations should be tractable and

simple enough, in the sense that the number of facets should

not be too large. As discussed above, tilings with too small tiles

do not necessarily provide better approximations of the more

delicate capsid features.

4.1. Minute mice virus (MVM)

This T ¼ 1 virus replicates in cells which are undergoing

division and is responsible for the modifications of the

response of biological systems where cell multiplication is

important, such as in cancer research studies. The PDB file

(PDB entry 1mvm, Llamas-Saiz et al., 1997; available from

Carrillo-Tripp et al., 2009) includes information on the RNA of

the virus with chain identifiers ‘R’ and ‘S’, that is removed

prior to analysis (Fig. 6a).

Figs. 6(b), 6(c) show that a first set of local minima

(as the number of facets increases) of the score �minðNÞ

for the three tilings is reached at N ¼ 15 for the b.c.c.

tiling, and at N ¼ 26 for the s.c. and f.c.c. tilings. In

the range 30 � N � 39, the f.c.c. tilings have a lower score

than the other two. Indeed, inspection of Fig. 7 confirms that,

as expected, the f.c.c. tilings provide a better approximation

to the viral shell in this range. As an example, the f.c.c. tiling

corresponding to N ¼ 36 is depicted in Fig. 8. Notice that

the contours of the inner and outer surfaces of the viral

capsid, including the �-barrel involved in host-cell

recognition (Llamas-Saiz et al., 1997), are well approximated

by this tiling.
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Figure 9
(a) The CCMV capsid with the ‘A’, ‘B’ and ‘C’ chains coloured in blue, red and green, respectively. (b) Plot of the score �min as a function of N for each of
the three tilings with a renormalization factor r1cwp � 0:392. (c) Magnification of the plot in (b) showing two local minima at N ¼ 35 and N ¼ 37, the
latter corresponding to the tiling shown in Fig. 10.

Figure 10
b.c.c. tiling for N ¼ 37 matching the Cowpea chlorotic mottle virus
capsid: (a) front view along a fivefold axis and (b) slice along the same
axis.



4.2. Cowpea chlorotic mottle virus (CCMV)

CCMV is a T ¼ 3 plant virus (PDB entry 1cwp, Speir et al.,

1995) which, thanks to reversible pH-dependent structural

changes, can be used to package polymers (Douglas & Young,

1998) (Fig. 9a). Figs. 9(b), 9(c) show that the b.c.c. tiling yields

lower scores than the f.c.c. and s.c. tilings when matched to the

CCMV capsid. The bulk structure of the CCMV capsid is well

approximated by fits corresponding to N ¼ 35 and N ¼ 37,

which correspond to two local minima in the plot of the score.

These two configurations differ very slightly in both s and �
and they differ by just one single tile. The configuration for

N ¼ 37 is represented in Fig. 10. The thickness of the capsid

shell and the structure of hexamers and pentamers are well

approximated by this b.c.c. tiling, and hence no finer config-

uration is considered.

4.3. Bacteriophage a3

We now focus on the T ¼ 1 bacteriophage �3 capsid (PDB

entry 1m06, Bernal et al., 2003). The structure is mostly

spherical, apart from the G-proteins positioned at the fivefold

axes as shown in Fig. 11(a). In the intermediate range

35 � N � 90, the b.c.c. tiling yields the lowest score (Figs. 11b,

11c). The configuration corresponding to the local minimum

N ¼ 53 is shown in Fig. 12.

4.4. Pariacoto virus (PaV)

PaV is a T ¼ 3 insect virus; the 180 coat proteins cluster into

60 trimers with notable protrusions along the quasi-threefold

axis (Tang et al., 2001). These protrusions, see Fig. 13(a), are

believed to be involved in host-cell recognition and are

therefore important features which need to be described by

our approximation. The best-match algorithm was run on the

PDB file (PDB entry 1f8v, Tang et al., 2001) from Carrillo-

Tripp et al. (2009) after the removal of the ‘R’ chain.

First note that the b.c.c. tiling provides the best match

among all tilings in the range 37<N< 70 (Figs. 13b, 13c). For

higher values of N, the algorithm lowers �min by fitting features

of the tertiary structure of the proteins. The first local

minimum of the b.c.c. tiling is located at N ¼ 16, but the

corresponding approximation by the tiles is too coarse, i.e. the

outer and inner capsid surfaces are not well represented by the

tile set. To match the protrusions, whose size is small when

compared to the size of the virus (with an outer radius

� 175 Å), a finer fit is needed. The score �min reaches a first

plateau in the interval N 2 ½40; 52�, and matches corre-

sponding to N 2 ½40; 52�, with the exception of N ¼ 40 or 44

(which do not fit the protrusions), are visually very similar. We

choose to display the tiling corresponding to N ¼ 41 in Fig. 14

since it is the simplest representation in this class of b.c.c.

matches. For this capsid we consider no finer fits as much

higher values of N are required for f.c.c. or b.c.c. tilings to

reach lower �min values.

We can compare our tile-matching approach with the one

based on point arrays, developed in Keef et al. (2013), as

applied to the PaV capsid. For clarity, we denote by P the

point array obtained in Keef et al. (2013) that best matches

PaV and by PS the set of vertices of Sb:c:c: corresponding to

N ¼ 41, obtained by fitting the b.c.c. tiling to PaV. In Keef et al.

(2013), a library of 569 point arrays has been created using
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Figure 11
(a) The T ¼ 1 bacteriophage �3 shown along a twofold axis. (b) Plot of the score �min as a function of N for each of the three tilings with a
renormalization factor r1m06 � 0:360. (c) Magnification of the plot in (b) showing the local minimum at N ¼ 53 corresponding to the tiling shown in Fig.
12.

Figure 12
b.c.c. tiling for N ¼ 53 matching the bacteriophage �3 capsid: (a) outside
view along a fivefold axis, and (b) a slice along the same axis.



affine extensions of the icosahedral group. After rescaling

these vertex sets such that the outermost vertices match the

protrusions of PaV, an RMSD-based score measuring the

distance between vertices and the surface capsid has been

used to rank these point arrays according to their proximity to

atomic positions in the viral capsid [see Keef et al. (2013) for

more details]. Notice that P and the set of points PS are

projections of b.c.c. lattice points: hence, once scaled to the

PaV capsid, P can be embedded into the gauge b.c.c. tiling

(defined in x2 as the b.c.c. tiling with scaling factor s ¼ 1)

rescaled by a factor s ¼ 15:51, whereas the scaling factor

obtained by fitting Sb:c:c: is s ¼ 16:05. This small difference in

the scalings corresponding to P and PS can easily be asso-

ciated with the difference in the matching algorithms, i.e.

minimizing the capsid-to-vertices distance (in the point array

approach) as opposed to minimizing the capsid-to-tile subset

distance (in the current study). As can be shown in Fig. 15 the

two approaches correspond to similar approximations of the

PaV capsid.

4.5. Physalis mottle virus (PhyMV)

PhyMV is a T = 3 virus infecting plants. The PDB file (PDB

entry 1e57, Krishna et al., 2001) used in the tile-matching

algorithm was created from X-ray crystallography with empty

capsids (Fig. 16a). The score �minðNÞ is plotted in Figs. 16(b),

16(c).

For N< 80 the b.c.c. tilings give better fits with respect to

the s.c. and f.c.c. tilings, but for N< 50 the matching of the

hexamers’ outer surface is poor. The tilings for N 2 ½50; 66�

share a common subset of tiles fitting the bulk of the

hexamers, and the main differences between these tilings

correspond to two different fittings of the pentamers’ outer

surfaces. As N increases and the approximation is finer, one of

the two configurations occurs repeatedly. We choose to display

the simplest representation (b.c.c. tiling corresponding to

N ¼ 53) of this class of approximations in Fig. 17.
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Figure 13
(a) The PaV capsid with the same colour coding as in Fig. 9(a). (b) Plot of the score �min as a function of N for each of the three tilings with a
renormalization factor r1f8v � 0:369. (c) Magnification of the plot in (b) showing the local minimum at N ¼ 16 and the value N ¼ 41 corresponding to the
tiling shown in Fig. 14.

Figure 14
b.c.c. tiling for N ¼ 41 matching the Pariacoto virus: (a) outside view
along a twofold axis, and (b) a slice along the same axis.

Figure 15
Comparison of the point array P derived in Keef et al. (2013) with the set
of vertices PS of one of our tilings using two cross-sectional views: (a)
slice along a twofold axis, and (b) a slice along a fivefold axis. For clarity
the vertices of P are displayed with a 4 Å radius and are rescaled to
match the vertices of the tile set PS . Coloured in red are the vertices
contributing to a poorer match. All vertices in P matching the capsid
features (in magenta) are vertices of the tile set selected by our algorithm,
while vertices with a higher approximation error (in red) and those (in
blue) providing geometrical constraints on the genomic material (not
shown), are not included in PS .



4.6. Carnation mottle virus (CarV)

CarV is a T ¼ 3 virus responsible for mild mottling and

chlorosis (i.e. whitening of green plant tissues due to deficiency

of chlorophyll) in carnation crops (PDB entry 1opo, Morgu-

nova et al., 1994). Its capsid displays protrusions near the

twofold axes, see Fig. 18(a). The results of the tile-matching

algorithm are shown in Figs. 18(b), 18(c). As in the case of

PaV, the b.c.c. tiling yields better fits than the s.c. or f.c.c. tilings

for equal or lower values of N. Also, the first minimum at

N ¼ 59 provides only a poor description of the inner capsid

surface and of the protrusion contour. We therefore look for a

finer approximation to better match the capsid contour. A

steep decrease in �min for N 2 ½73; 80� suggests that smaller

features of the viral capsid are matched. After this, �minðNÞ

decreases almost linearly over N 2 ½80; 114�. Since N ¼ 80

corresponds to the configuration for which the decrease of

�min is the most significant, we choose this as the simplest

representation of the essential features of the viral capsid (see

Fig. 19).

5. Discussion

In this work we have explored the possibility of approximating

viral capsids by icosahedral tilings, motivated by Janner’s work

on the approximation of virus structure by lattices. To do so,

we have further developed ideas from polygonal approxima-

tion theory to define a scoring function that helps to rank the

tilings according to how good they fit to the capsid surface.

The question of the goodness of fit, of course, cannot have a

conclusive answer, but our investigation will hopefully provide

the basis for further research in this field.

Here we critically review our results and the open problems

that they pose. First of all, we have constructed three gauge

tilings (filling all space), by the well known cut-and-project

scheme, that guarantees that the tilings have icosahedral

symmetry. By rescaling each gauge tiling, we have obtained

three families of tilings parametrized by the scaling parameter

s. From each of these rescaled tilings we have selected finite

subsets of tiles, by identifying those with occupancy greater

than a given threshold �, i.e. by selecting those tiles such that a

fraction at least � of their volume is occupied by atoms of the

capsid. Indeed, for each fixed value of the scaling parameter,

this allows one to define a sequence of such finite tilings,

obtained by increasing the threshold occupancy.

Note that tilings with greater occupancy do not necessarily

yield a better fit of the capsid. Tiles are discrete and their

shapes are fixed, and the capsid may have protrusions or

delicate external features such as protruding loops, and it may

well be that, by omitting tiles with small occupancy, we miss

some of these surface features. Hence, additional selection

criteria are needed. We have chosen to explore criteria based

on the goodness of fit of the surface of the tiling to the surface

features of the capsid. In order to do so, we have defined a

score � as the weighted sum of two contributions, one

measuring the average distance between the capsid surface

and the surface of the tiling, and the second measuring how
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Figure 16
(a) The PhyMV capsid seen from the outside along a twofold axis with the same colour coding as in Fig. 13(a). (b) Plot of the score �min as a function of N
for each of the three tilings with a renormalization factor r1e57 � 0:415. (c) Magnification of the plot in (b) showing the value N ¼ 53 corresponding to
the tiling shown in Fig. 17.

Figure 17
b.c.c. tiling corresponding to N ¼ 53 for PhyMV: (a) outside view along a
threefold axis, and (b) a slice along the same axis.



well each surface element of the tiling, i.e. its faces, edges and

vertices, describe the fine features of the capsid surface [cf.

equation (8) and Figs. 4 and 5].

As a basic parameter labelling each finite tiling, we have

chosen a measure of its complexity, given by the number N of

facets of the tiling surface that intersect the fundamental

domain of the icosahedral group. Notice that this is a better

measure than the scaling s, which may not be comparable

among different viruses due to their different sizes. For each

fixed number of facets N, we have selected the tiling with the

lower score, and have plotted the minimum score as a function

of N. Plots of the minimum score versus N are useful tools to

understand goodness of fit and the viability of selection

criteria for the best tilings. Inspection of our case studies, in

fact, shows that there is no such unique criterion.

Consider our first two examples, MVM and CCMV (Figs. 6

and 9). These capsids do not have important protrusions and

their surface is quite smooth. Hence, we expect that tilings

with a relatively small number of facets give acceptable

approximations both in terms of goodness of fit and low

complexity. Hence, a viable selection criterion could be to

choose tilings corresponding to the first local minima of the

score as N increases. Inspection of Figs. 8 and 10 shows that

this is indeed the case: the tilings with 36 (MVM) and 37

(CCMV) faces per fundamental domain give reasonable

approximations of the capsid surfaces. The bacteriophage �3

capsid lies somehow at the boundary of the set of viruses for

which coarse approximations are sufficient. It has large

protrusions on the surface (Fig. 11), but no finer relevant

features. Hence, the criterion of choosing the first local

minimum, corresponding to N ¼ 53, is satisfactory (Fig. 12). In

a different class are the Pariacoto, Physalis mottle and

Carnation mottle viruses (Figs. 13, 16 and 18). The capsids of

these viruses have small, but tall protrusions that are impor-

tant for their functionality and must be taken into account in

the approximation. In this case, therefore, we expect that more

complex tiles are needed to describe them, and the best

selection rule turns out to be a choice of tiling which corre-

sponds to a plateau of the score plot. Selecting the smaller

complexity (i.e. N) tiling in these classes guarantees that a

further increase of complexity does not change the score, and

hence the goodness of fit, significantly. Figs. 14, 17 and 19 show

the best fits to PAV, PhyMV and CarV, corresponding to

N ¼ 41; 53 and 80, respectively, which represent acceptable

approximations of the capsids with relatively low complexity.

In conclusion, our work shows that approximations of viral

capsids by icosahedral tilings are feasible, and provides the

necessary basis for further work in this field. The approx-

imations provide an alternative to Janner’s blueprints for virus

architecture in terms of lattice theory. They form a basis for

the construction of coarse-grained models of viral capsids that

can be used for the analysis of virus assembly and of the

structural transitions in the surface lattices of viral capsids that

in many viruses are important for infectivity.
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Figure 18
(a) The CarV capsid with the same colour coding as in Fig. 13(a). (b) Plot of the score �min as a function of N for each of the three tilings with a
renormalization factor r1opo � 0:362. (c) Magnification of the plot in (b) showing the local minimum at N ¼ 59 and the value N ¼ 80 corresponding to
the tiling shown in Fig. 19.

Figure 19
b.c.c. tiling for N ¼ 80 matching the Carnation virus: (a) outside view
along a fivefold axis, and (b) a slice along the same axis.
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